

The kernel report

(OSS EU 2023 edition)

Jonathan Corbet
LWN.net

corbet@lwn.net

Part 1: Statistics

Recent release history

Release Date Commits Devs 1st time
6.0 Oct 2 15,402 2,034 236
6.1 Dec 11 13,942 2,043 303
6.2 Feb 19 15,536 2,088 294
6.3 Apr 24 14,424 1,971 250
6.4 Jun 25 14,835 1,980 282
6.5 Aug 27 13,561 1,921 271

Recent release history

Release Date Commits Devs 1st time
6.0 Oct 2 15,402 2,034 236
6.1 Dec 11 13,942 2,043 303
6.2 Feb 19 15,536 2,088 294
6.3 Apr 24 14,424 1,971 250
6.4 Jun 25 14,835 1,980 282
6.5 Aug 27 13,561 1,921 271

Recent release history

Release Date Commits Devs 1st time
6.0 Oct 2 15,402 2,034 236
6.1 Dec 11 13,942 2,043 303
6.2 Feb 19 15,536 2,088 294
6.3 Apr 24 14,424 1,971 250
6.4 Jun 25 14,835 1,980 282
6.5 Aug 27 13,561 1,921 271
6.6* Oct 29 <so-far numbers here>

Stable updates

Release Updates Commits
4.14 324 26,799
4.19 293 26,870
5.4 255 24,537
5.10 193 22,868
5.15 129 18,332
6.1 50 9,021

Part 2: Key questions facing
the kernel community

What kernel should users run?

Ways to pick a kernel

1) Run the latest stable update

You HAVE to take all of the stable/LTS releases in
order to have a secure and stable system. If you
attempt to cherry-pick random patches you will NOT
fix all of the known, and unknown, problems, but
rather you will end up with a potentially more insecure
system, and one that contains known bugs.
— Greg Kroah-Hartman

Stable updates

Release Updates Commits
4.14 324 26,799
4.19 293 26,870
5.4 255 24,537
5.10 193 22,868
5.15 129 18,332
6.1 50 9,021

Source of 4.14.x bugs

Source of 4.14.x bugs

Ways to pick a kernel

1) Run the latest stable update

2) Run an old kernel + backported fixes

What is best for our users?

One last note

Release Updates Commits
4.14 324 26,799
4.19 293 26,870
5.4 255 24,537
5.10 193 22,868
5.15 129 18,332
6.1 50 9,021

One last note

Release Updates Commits
4.14 324 26,799
4.19 293 26,870
5.4 255 24,537
5.10 193 22,868
5.15 129 18,332
6.1 50 9,021

BPF: how far do we go?

BPF review

BPF is an in-kernel virtual machine
Code loaded from user space

“A safer form of C”

What BPF can do

Packet filtering
TCP congestion control
Traffic control
Routing++ w/XDP
Infrared drivers
Input drivers
System-call filtering (seccomp)
Linux security modules
Tracing and analysis
...

bpftool prog list
2: tracing name hid_tail_call tag 7cc47bbf07148bfe gpl
47: lsm name restrict_filesystems tag aae89fa01fe7ee91 gpl
51: cgroup_device name sd_devices tag 40ddf486530245f5 gpl
52: cgroup_skb name sd_fw_egress tag 6deef7357e7b4530 gpl
53: cgroup_skb name sd_fw_ingress tag 6deef7357e7b4530 gpl
54: cgroup_skb name sd_fw_egress tag 6deef7357e7b4530 gpl
55: cgroup_skb name sd_fw_ingress tag 6deef7357e7b4530 gpl
56: cgroup_device name sd_devices tag be31ae23198a0378 gpl
57: cgroup_skb name sd_fw_egress tag 6deef7357e7b4530 gpl
58: cgroup_skb name sd_fw_ingress tag 6deef7357e7b4530 gpl
59: cgroup_device name sd_devices tag be31ae23198a0378 gpl
60: cgroup_device name sd_devices tag ee0e253c78993a24 gpl
61: cgroup_device name sd_devices tag ee0e253c78993a24 gpl
62: cgroup_device name sd_devices tag 3a0ef5414c2f6fca gpl
<six more...>

bpftool prog list
2: tracing name hid_tail_call tag 7cc47bbf07148bfe gpl
47: lsm name restrict_filesystems tag aae89fa01fe7ee91 gpl
51: cgroup_device name sd_devices tag 40ddf486530245f5 gpl
52: cgroup_skb name sd_fw_egress tag 6deef7357e7b4530 gpl
53: cgroup_skb name sd_fw_ingress tag 6deef7357e7b4530 gpl
54: cgroup_skb name sd_fw_egress tag 6deef7357e7b4530 gpl
55: cgroup_skb name sd_fw_ingress tag 6deef7357e7b4530 gpl
56: cgroup_device name sd_devices tag be31ae23198a0378 gpl
57: cgroup_skb name sd_fw_egress tag 6deef7357e7b4530 gpl
58: cgroup_skb name sd_fw_ingress tag 6deef7357e7b4530 gpl
59: cgroup_device name sd_devices tag be31ae23198a0378 gpl
60: cgroup_device name sd_devices tag ee0e253c78993a24 gpl
61: cgroup_device name sd_devices tag ee0e253c78993a24 gpl
62: cgroup_device name sd_devices tag 3a0ef5414c2f6fca gpl
<six more...>

What BPF might do

The extensible scheduler class
Write complete CPU schedulers in BPF
https://lwn.net/Articles/922405/

Why schedulers in BPF?

Easy experimentation
Faster scheduler development
Ad hoc schedulers for special workloads
...

What BPF might do

Page aging

Why?
Adjust memory-management to workload

What BPF might do

io_uring integration

Why?
Better control over sequences of operations
Create a complete programming environment

Extensible scheduler class: rejected

Why not BPF schedulers?

Added maintenance burden
Benchmark gaming
Vendors may require specific schedulers
ABI concerns
Redirection of work on core scheduler

Where do we draw the line?

Rust

Rust has a lot to offer

A stronger type system
No undefined behavior

No use-after-free problems
No data races
Everything initialized
…

Attractive to newer developers

Why not Rust in the kernel?

A new language adds complexity
The language is still evolving — quickly
Maintainers will need to learn Rust
Lots of glue code
Some things are hard to do in Rust

Why not Rust in the kernel?

A new language adds complexity
The language is still evolving — quickly
Maintainers will need to learn Rust
Lots of glue code
Some things are hard to do in Rust
Conservatism

 pub unsafe fn current() -> impl Deref<Target = Task> {
 struct TaskRef<'a> {
 task: &'a Task,
 _not_send: PhantomData<*mut ()>,
 }

 impl Deref for TaskRef<'_> {
 type Target = Task;

 fn deref(&self) -> &Self::Target {
 self.task
 }
 }

“There are possibly some well-designed and
written parts which have not suffered a memory
safety issue in many years. It's insulting to
present this as an improvement over what was
achieved by those doing all this hard work.”
— a longtime kernel developer

Status

Initial Rust support merged for 6.1
A “hello world” module

More support code in subsequent kernels
Access to existing types and functions
...but safer

Status

Lots more support code out of tree

Interesting new stuff:
Apple M1 GPU driver
PuzzleFS implementation
Plan9 filesystem server (read/write)

Rust support was merged as
an experiment

When do we decide that the experiment
is a success?

When do we decide that the experiment
is a success?

→when we merge the first feature that users
depend on

The Rust decision point
is coming soon

Threat models

Kernel security

...has gotten better!
Improved APIs
Adoption of hardening techniques
Better patch management

...but it’s still awful

Security — against what?

Security — against what?
Remote attackers?

Security — against what?
Remote attackers?
Local, unprivileged accounts?

Security — against what?
Remote attackers?
Local, unprivileged accounts?
The root account?

Protecting against root

Run the kernel in lockdown mode
Numerous features disabled

fs-verity / composefs / dm-verity …
Integrity measurement

Protecting against root

Run the kernel in lockdown mode
Numerous features disabled

fs-verity / composefs / dm-verity …
Integrity measurement

But what about:
Malicious filesystem images?
Writing to mounted block devices?

Security — against what?
Remote attackers?
Local, unprivileged accounts?
The root account?
The computer itself?

Confidential computing

Even the host cannot be trusted
Thus:

Require attestation from the CPU
Disable every feature you can
Harden device drivers against hostile input

Talking about security models without
having an agreed upon threat model is
really a waste of time.
— Ted Ts’o

The kernel does not have
an agreed-upon threat model

The maintainership crisis

Being maintainer feels like a punishment,
and that cannot stand. We need help.
— Darrick Wong

Maintainers/longtime developers are
burning out.
— Josef Bacik

What is going on?

Maintainer pain points

Increasing demands

Maintainer pain points

Increasing demands
Understaffing

Most of my friends work for small companies, nonprofits, and
local governments. They report the same problems with
overwork, pervasive fear and anger, and struggle to understand
and adapt to new ideas that I observe here. They see the direct
connection between their org's lack of revenue and the under
resourcedness.

They /don't/ understand why the hell the same happens to me
and my workplace proximity associates, when we all work for
companies that each clear hundreds of billions of dollars in
revenue per year.
— Darrick Wong

Maintainer pain points

Increasing demands
Understaffing
Lack of employer support

But being a maintainer myself with a full-
time job that is not to do my maintainership,
I'm struggling to find time to work on this.
— Steve Rostedt

Many maintainers are not paid to maintain

How does your company compare?
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html

Maintainer pain points

Increasing demands
Understaffing
Lack of employer support
Fuzzers

Dark areas in the kernel

Documentation
Build system
Many core-kernel areas
Drivers for older hardware
...

Dark areas in the kernel

Documentation
Build system
Many core-kernel areas
Drivers for older hardware
…
Maintainers

Open source is free like a puppy is free
— Scott McNealy

How can we take better
care of the puppy?

Questions?

(slides: https://lwn.net/talks/2023/kr-osseu.pdf)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

